

Microclimate Cooling and Power Requirement

Roger Masadi
U.S. Army Soldier & Biological Chemical Command
Natick Soldier Center
(508) 233-5453/5440

Microclimate Conditioning Thermal Stress

Maintaining soldier performance during operations has always been a challenge.

High levels of physical activity, clothing and protective gear that prevents heat dissipation from the body, and the carrying of heavy combat equipment are hallmarks military operations.

Microclimate Conditioning **Mission**

Our goal is to enhance warrior performance in hot and cold environments by reducing heat stress and enhancing protection against cold on the battlefield.

One way we're reducing heat stress on the battlefield is through the development of lightweight, low power microclimate cooling systems.

Warrior Microclimate Cooling Requirements

HOW MUCH COOLING?

Depends on:

- Ambient Environment
 Temperature, Humidity, solar load, wind speed, etc
- •Work Rate

 Between a low of 100 watts to a high of 500+ watts.
- •Clothing Ensemble Characteristics Insulation, Vapor Permeability, etc

Warrior Microclimate Cooling Requirements

The dismounted soldier metabolic heat production varies depending on activity levels:

- •Very Light work rate 100-175 watts (e.g guard duty=137w)
- •Light work rate 125-325 watts (e.g. cleaning rifle=198w)
- •Moderate work rate 325-500 watts (e.g. foxhole digging=475w)
- •Heavy work rate 500+ watts (e.g. emplacement digging=540)

Warrior Microclimate Cooling Requirements

The daily cooling requirement varies between a high of 1200 watt-hours and a low of 600 watt-hours.

The cooling rate of 300 watts has been shown to adequately reduce heat stress and enhance performance under a variety of environmental conditions, protective gear, and work rates.

Lower cooling rates of 200 and 100 watts have been shown to provide limited heat stress relief in temperate environment.

Microclimate Cooling

Technologies Investigated

Foot Pump
Ambient Air blower
Thermoelectric
Heat Pipe
Air-Cycle
Ejector Cooling
Solid Absorption
Liquid Absorption
Stirling Cycle
Vapor-Compression

Wetted Cover
Vortex Tube
Ice Phase Transition
CO₂ Phase Transition
Endothermic Reaction
Heat Pipe

Microclimate Cooling Recommended Technologies

Based on earlier studies these technologies were recommended and pursued:

- **⇒ Vapor Compression cooling**
- \Rightarrow Solid Absorption cooling
- **⇒** Ambient Air blower
- \Rightarrow Stirling Cycle cooling
- \Rightarrow Ice Phase cooling

Microclimate Cooling Efforts

Recent microclimate cooling efforts:

Soldier Integrated Protective Ensemble Air Ventilation System - 1991 Individual Microclimate Cooling System - 1994 Personal Vapor Compression Cooling System - 1996 Personal Ice Cooling System - 1996 Advanced Lightweight Microclimate Cooling System - 1998 Complex Compound Absorption Microclimate Cooling System - 2000

Current microclimate cooling efforts:

Air Warrior Microclimate Cooling System - current Army program Advanced Concept Uniform cooling concept - current Army program Integrated Mesoscopic Cooling Circuits-current DARPA program Mesoscopic Adsorption Cooling System -current DARPA program Carbon Absorption Cooling - current DARPA program

Microclimate Cooling **Energy and Power**

Cooling System	Cooling rate/	Continuous/	Minimum Daily
	Electrical power	Intermittent	Cooling Energy/
	(watts)	Duration	Electrical Energy
		(hours)	(watt-hours)
300W MCC	300/150	2/12	600/300
200W MCC	200/100	3/12	600/300
100W MCC	100/50	6/12	600/300
Future 100W	100/30	6/12	600/300
MCC			

Ambient Blowers **Energy and Power**

Cooling System	Electrical Power (watts)	Continuous/ Intermittent Duration (hours)	Electrical Energy watt-hours
15 CFM AB	25	6/12	150
13 CFM AB	15	6/12	90
8 CFM AB	7	10/12	70

Prototype Air Blowers

These efficient brushless DC air blowers are potential candidates for the Objective Force Warrior. They provide high flow rates at low weight and power. These blowers were demonstrated on the Predator concept.

Blower Options:

•24-volt / 15 CFM air flow @ 3 inch WG

Power: 15 watts Weight: 2 Lbs.

•12-volt / 13 CFM @ 3 inch WG

Power: 15 watts Weight: 2 Lbs.

• 6-volt / 8 CFM @ 3 inch WG

Power: 7 watts Weight: 2 Lbs.

